Use this URL to cite or link to this record in EThOS:
Title: Strain mapping in teeth with variable remaining tooth structure
Author: Alhamdan, Mai M.
ISNI:       0000 0005 0289 0710
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Problem: The effect of remaining tooth structure on strain in compromised teeth is not fully understood. Different remaining tooth quantities may affect stress and strain concentration within the remaining structure and potentially the longevity of the related restoration. Objectives: The aim of this project was to map and evaluate tooth strain levels at different stages and areas of structural tooth loss created by dental preparation (simulating caries created lesions) or soft drink demineralisation (simulating external acid erosion lesions), before and after restoration, and to evaluate and compare different strain measurement techniques: strain gauges (SG), the surface displacement field measured using digital image correlation (DIC), electronic speckle pattern interferometry (ESPI), and finite element analysis (FEA). In addition, testing teeth affected by erosion required testing and verifying different acid demineralisation protocols. Material and methods: Part I: Enamel samples (sound, polished) were subjected to extended 25 hours (hr) soft drink immersion protocols (accelerated, prolonged) with different salivary protection conditions (no saliva, artificial saliva, and natural saliva) to compare enamel surface loss. Moreover, enamel surface loss of extended erosion periods simulating different levels of clinical erosion lesions was calculated by different imaging methodologies. Microscopic analysis was performed to compare subsurface changes of early and extended erosion protocols. Part II: Strain under static loading was compared in teeth with different stages of unrestored occlusal and buccal accelerated soft drink demineralisation lesions and after restoration using different techniques (strain gauges, electronic speckle pattern interferometry, and finite element analysis). Part III: Strain under static loading was compared in prepared teeth with different remaining tooth dimensions and different restorations using strain gauges and digital image correlation techniques. Results: Part I: No statistical significance was detected in enamel thickness loss between sound and polished enamel samples in the accelerated erosion groups under all salivary conditions or between early and extended erosion groups tested. Part II: All testing methodologies measured an increased strain reading after 1 day in occlusal erosion group followed by gradual decrease, while, continuous increase in strain was observed with buccal erosion progression. For both groups, all restorative materials used were able to restore strain close to pre-treatment level. However, strain distribution pattern was more favourable in ceramic and gold occlusal onlays than composite onlays. Part III: for both strain gauges and digital image correlation, remaining tooth height ≥ 3 mm and width of 1 to 1.5 mm of the remaining tooth structure had a positive effect on strain. Tooth compositions of enamel and dentine resisted strain better than dentine counterparts at all dimensions. Both core restorations (with and without cuspal coverage) were found to support the remaining tooth structure and reduce strain. However, only cuspal coverage recorded significantly lower strain than their unrestored counterparts. Conclusion: Restorations bonded to advanced erosion induced lesions restored strain levels to pre-treatment condition and produced a more favourable strain distribution pattern highlighting the role of adhesion in reducing strain. Remaining tooth structure suffers less strain under loading when enamel is part of the structure and when the minimum dimension of 3 mm in height and 1.5 mm in width is preserved. Bonding of core restoration or cusp coverage aids in reducing strain under loading. All strain measuring methodologies were comparable, where similar strain behaviour was recorded. Remineralisation of enamel and dentine is effective in the management of initial erosion.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available