Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822788
Title: In-silico investigation of the neonatal brain physiology using a systems biology approach : modelling birth asphyxia and neuroprotective strategies
Author: Russell-Buckland, Joshua
ISNI:       0000 0005 0288 6535
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Hypoxic ischaemic encephelopathy (HIE), often resulting from intrapartum hypoxic-ischemic injury, is a significant cause of death and morbidity before, during and after birth. In order to identify and monitor HIE, clinicians use non-invasive techniques including magnetic resonance spectroscopy (MRS) and near-infrared spectroscopy (NIRS). However, interpretation of these signals, particularly to determine the effectiveness of treatment and the severity of injury, is a challenging and difficult task. This thesis describes an attempt to use a systems biology approach to better understand the mechanisms behind HIE and its outcomes, using mathematical and computational techniques to analyse multimodal data, including broadband near-infrared spectroscopy (bNIRS). These models incorporate submodels of cerebral blood flow, oxygen transport and metabolism into a single cohesive model that attempts to simulate the observed measurements of tissue oxygenation and metabolism. The scope of this work is to both develop a set of computational tools that can be used to better understand existing systems biology models of the brain and to develop a new model which is able to incorporate the effects of therapeutic hypothermia, a common treatment for HIE, on the underlying physiology and its dynamics. The work begins by redeveloping the existing framework used for running and analysing systems biology models as used previously, before going on to develop a Bayesian framework which allows a better and more comprehensive interpretation of the results. This framework is then used to analyse three new models that incorporate the impact of therapeutic hypothermia on the piglet brain. The model determined to be most effective is then applied to clinical data from neonates that experience spontaneous desaturations in blood oxygen whilst undergoing hypothermic treatment. In all cases data from subjects with both mild and severe injuries are compared to determine if separate parameter spaces (and therefore physiological mechanisms) can be identified for each.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.822788  DOI: Not available
Share: