Use this URL to cite or link to this record in EThOS:
Title: An investigation of search behaviour in search-based unit test generation
Author: Albunian, Nasser
ISNI:       0000 0004 9356 9449
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Access from Institution:
As software testing is a laborious and error-prone task, automation is desirable. Search-based unit test generation applies evolutionary search algorithms to generate software tests and, in the context of unit testing object-oriented software, Genetic Algorithms (GAs) are frequently employed to generate unit tests that maximise code coverage. Although GAs are effective at generating tests that achieve high code coverage, they are still far from being able to satisfy all test goals (e.g., covering all branches). While some general limitations are known, there is still a lack of understanding of the search behaviour during the optimization, making it difficult to identify the factors that make a search problem difficult. Therefore, this thesis aims to investigate the search behaviour when GAs are applied to generate object-oriented unit tests and, more specifically, identify the reasons why the search fails to achieve the desired test goals. This is achieved by investigating (1) the fitness landscape structure and the impact of its features on the generation of unit tests and (2) the influence of population diversity on generating potential unit tests. Based on the outcome of this investigation, the impact of test case reduction on the landscape features and population diversity is also investigated. Our results reveal that classical indicators for rugged fitness landscapes suggest well searchable problems in the case of unit test generation, but the fitness landscape for most problem instances is dominated by detrimental plateaus. However, increasing diversity does not have a beneficial effect on coverage in general, but it may improve coverage when diversity is promoted adaptively. In fact, increasing diversity has a negative impact on the individual length, which can also be mitigated with the adaptive diversity. Applying the test case reduction seems to be promising in improving the landscape structure and reducing the negative side effects of diversity on length, but have no considerable impact on the search performance.
Supervisor: Sudholt, Dirk ; Fraser, Gordon Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available