Use this URL to cite or link to this record in EThOS:
Title: Automating the multimodal analysis of musculoskeletal imaging in the presence of hip implants
Author: Ranzini, Marta Bianca Maria
ISNI:       0000 0004 9359 9832
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In patients treated with hip arthroplasty, the muscular condition and presence of inflammatory reactions are assessed using magnetic resonance imaging (MRI). As MRI lacks contrast for bony structures, computed tomography (CT) is preferred for clinical evaluation of bone tissue and orthopaedic surgical planning. Combining the complementary information of MRI and CT could improve current clinical practice for diagnosis, monitoring and treatment planning. In particular, the different contrast of these modalities could help better quantify the presence of fatty infiltration to characterise muscular condition after hip replacement. In this thesis, I developed automated processing tools for the joint analysis of CT and MR images of patients with hip implants. In order to combine the multimodal information, a novel nonlinear registration algorithm was introduced, which imposes rigidity constraints on bony structures to ensure realistic deformation. I implemented and thoroughly validated a fully automated framework for the multimodal segmentation of healthy and pathological musculoskeletal structures, as well as implants. This framework combines the proposed registration algorithm with tailored image quality enhancement techniques and a multi-atlas-based segmentation approach, providing robustness against the large population anatomical variability and the presence of noise and artefacts in the images. The automation of muscle segmentation enabled the derivation of a measure of fatty infiltration, the Intramuscular Fat Fraction, useful to characterise the presence of muscle atrophy. The proposed imaging biomarker was shown to strongly correlate with the atrophy radiological score currently used in clinical practice. Finally, a preliminary work on multimodal metal artefact reduction, using an unsupervised deep learning strategy, showed promise for improving the postprocessing of CT and MR images heavily corrupted by metal artefact. This work represents a step forward towards the automation of image analysis in hip arthroplasty, supporting and quantitatively informing the decision-making process about patient’s management.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available