Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.819952
Title: Microvascular endothelial dilator function : role of COX and the effects of ecdysteroids
Author: Raees, Asmaa
ISNI:       0000 0004 9359 9517
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Cyclooxygenase (COX), which can be expressed as COX-1 or COX-2 in endothelial cells has the unique ability to regulate microvascular tone through balanced production of dilator/constrictor prostanoids. This study investigated the roles of these isoforms in microvascular endothelial dilator function and how these are affected by supplement-derived ecdysteroids. Acetylcholine or 20-hydroxyecdysone relaxation were recorded in Skeletal muscle (SKM) and mesenteric (ME) arteries from healthy sheep and omental (OM) and subcutaneous (SC) fat arteries from obese humans by wire myography in the absence and presence of inhibitors of nitric oxide synthase, cyclooxygenase (COX) isoforms 1 and 2 and endothelium-derived hyperpolarizing factors. Gene and protein expression analysis were also carried out to fully characterize the roles of COX in these arteries. Non-selective COX inhibition attenuated acetylcholine relaxation in SKM arteries but enhanced it in ME arteries. Selective inhibition of COX-1 in both SKM and ME arteries also attenuated acetylcholine relaxation. In contrast, selective inhibition of COX-2 enhanced acetylcholine relaxation in ME arteries and had no effect in SKM arteries. In OM arteries from obese patients, selective inhibition of COX-1 but not COX-2 significantly improved acetylcholine relaxation. The OM arteries also displayed enhanced responsiveness to thromboxane A2 mimetic (U46619) compared with SC arteries. 20-hydroxyecdysone caused relaxation which was attenuated by NOS inhibition compared with COX inhibition in SKM and ME arteries. COX roles in microvascular endothelial dilator function are isoform-specific and dependent on type and health of the vasculature. In healthy arteries, COX-1 promotes but COX-2 opposes vasodilation. In human obesity, COX-1 opposes while COX plays no part in OM endothelial dilator function. Although 20-hydroxyecdysone alters COX expression, its vasodilatory effect is more eNOS-dependent than COX-dependent.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.819952  DOI: Not available
Share: