Use this URL to cite or link to this record in EThOS:
Title: Next-generation sequencing in the diagnosis of dementia and Huntington's disease phenocopy syndromes
Author: Koriath, Carolin Anna Maria
ISNI:       0000 0004 9359 8602
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Dementia is a major cause of disability worldwide, especially in the elderly. While Mendelian causes of dementia only account for a small proportion of cases, their role in elucidating the pathophysiology has been paramount. Genetically defined cohorts also offer opportunities for trials of disease‐modifying treatments, even before the onset of symptoms. Previously, only a small number of genes could be selected for genetic testing because of cost‐restrictions, but the advent of next‐generation sequencing has enabled its more widespread use. This thesis explored the use of next‐generation sequencing in patients living with dementia and HD phenocopy (HDPC) syndromes, who include patients with mixed presentations of dementia and motor symptoms. Using a validated 17 gene Dementia Gene panel supplemented by C9orf72 expansion testing and Apolipoprotein (ApoE) genotyping in over 3000 patients and controls, I determined the success rate of genetic panel testing in dementia; I developed an algorithm for the selection of patients for genetic testing based on the clinical presentation and common predictors of genetic causes of dementia. A detailed analysis of the ApoE data in the frontotemporal dementia cohort revealed strong effects of ApoE4 on age at onset in the subset with proven or suspected tau neuropathology, as well as opposite effects of amyloid‐beta pathology. In order to improve the definition and diagnostic rate of HDPC syndromes, patients who were referred for HD testing from two clinics were compared based on their clinical presentation; patients could not be distinguished based on clinical presentation alone, even if analysed as patterns. Given the low success rate of dementia gene panel testing in the HDPC cohort, 50 patients were selected for whole‐genome sequencing based on their HD‐likeness and their likelihood of harbouring a Mendelian variant. The results revealed a number of variants of interest but require replication.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available