Use this URL to cite or link to this record in EThOS:
Title: Geochemical reconstructions of Southern Ocean pH and temperature over the last glacial cycle
Author: Crumpton-Banks, Jessica Georgina Magdalen
ISNI:       0000 0004 9352 8153
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 26 Jun 2022
Access from Institution:
The Southern Ocean is widely thought to play an important role in atmospheric CO2 change over glacial-interglacial cycles. It has been suggested that as the region that ventilates the majority of the world's carbon-rich deep waters today, reduced exchange between deep waters and the atmosphere in the Southern Ocean acted to draw down CO2 over glacial timescales. However, direct evidence of the Southern Ocean's role in glacial CO2 drawdown has been lacking thus far. Here I apply the boron-isotope pH-proxy to foraminifera from the Antarctic Zone sediment core PS1506 over the last glacial cycle. The low boron concentrations in these polar foraminifera makes these samples particularly sensitive to boron blank and so a close examination of the sources of blank, and an assessment of the precision of blank measurements, has been made. The ratios of trace elements to calcium in foraminiferal shells are widely applied as proxies for palaeoenvironmental parameters such as temperature. As Southern Ocean carbonate sediments are particularly prone to dissolution, which can affect trace element concentrations, an assessment of dissolution has been made. Firstly, dissolution experiments were conducted to constrain the impact of dissolution in a controlled setting, and secondly, shell mass and trace elements were evaluated for the downcore record. Imaging reveals similar etching textures in both experimentally dissolved samples and deglacial intervals, when shell mass is also low and several trace elements exhibit an excursion to lower values. Boron isotope data for PS1506 show that during the penultimate interglacial, surface water pH was low. At the onset of atmospheric CO2 drawdown, pH increased, indicating low CO2 surface waters. This is consistent with the signature predicted for a more stratified Southern Ocean, and is evidence that stratification in the Antarctic Zone acted to contribute to CO2 drawdown early in the transition to a glacial state.
Supervisor: Burke, Andrea ; Rae, James William Buchanan Sponsor: Natural Environment Research Council (NERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Palaeoceanography ; Southern Ocean ; Foraminifera ; CO2 ; Glacial-interglacial ; Boron isotopes ; Climate