Use this URL to cite or link to this record in EThOS:
Title: Investigating dependencies between railway system and other infrastructure systems, using a scenario-based case study approach
Author: Faramehr, Samane
ISNI:       0000 0004 9348 4453
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Infrastructure systems are developed in a highly interdependent and interconnected way at multiple levels. There is a need to consider infrastructure interdependencies for adaptation in the event of future challenges (e.g. climate change) as well as for proactive risk management strategies and other future decision makings. However, academic literature reveals a gap of knowledge about some dependencies that exist between technical infrastructure systems. Railways, as complex systems, have a large number of dependencies. In this thesis the interdependencies between the different railway sub-systems and other infrastructure systems have been studied. The existing literature in this subject has been thoroughly reviewed and it has been found that the dependencies at a sector level and a technical environment have not received enough attention and that there are many poorly understood dependencies. In this thesis two scenarios of dependencies related to railways have been investigated. The first scenario concerns the dependency that exists between electricity generation (power output) and freight railway traffic and was investigated using data related to sectors and time-series analysis. The second investigation was carried out to evaluate the dependency that exists between railways and urban water distribution systems in the event of track flooding caused by a water main burst. As a part of these analyses, a novel modelling and simulation technique has been developed. Hydraulic and numerical simulations have been used to quantify the dependencies which have been highlighted qualitatively by stakeholders and experts. Unlike in the previous research in this field, for which usually the availability of the simulation tool dictates the interdependency analysis, the model and simulation techniques used for this work have been developed based on the requirement of the dependency scenarios. It is concluded that, by adapting a participatory modelling approach, scenario-based case studies can provide valuable insight into poorly understood infrastructure dependencies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available