Use this URL to cite or link to this record in EThOS:
Title: Quantitative diffusion MRI with application to multiple sclerosis
Author: Powell, Elizabeth
ISNI:       0000 0004 9353 2208
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Diffusion MRI (dMRI) is a uniquely non-invasive probe of biological tissue properties, increasingly able to provide access to ever more intricate structural and microstructural tissue information. Imaging biomarkers that reveal pathological alterations can help advance our knowledge of complex neurological disorders such as multiple sclerosis (MS), but depend on both high quality image data and robust post-processing pipelines. The overarching aim of this thesis was to develop methods to improve the characterisation of brain tissue structure and microstructure using dMRI. Two distinct avenues were explored. In the first approach, network science and graph theory were used to identify core human brain networks with improved sensitivity to subtle pathological damage. A novel consensus subnetwork was derived using graph partitioning techniques to select nodes based on independent measures of centrality, and was better able to explain cognitive impairment in relapsing-remitting MS patients than either full brain or default mode networks. The influence of edge weighting scheme on graph characteristics was explored in a separate study, which contributes to the connectomics field by demonstrating how study outcomes can be affected by an aspect of network design often overlooked. The second avenue investigated the influence of image artefacts and noise on the accuracy and precision of microstructural tissue parameters. Correction methods for the echo planar imaging (EPI) Nyquist ghost artefact were systematically evaluated for the first time in high b-value dMRI, and the outcomes were used to develop a new 2D phase-corrected reconstruction framework with simultaneous channel-wise noise reduction appropriate for dMRI. The technique was demonstrated to alleviate biases associated with Nyquist ghosting and image noise in dMRI biomarkers, but has broader applications in other imaging protocols that utilise the EPI readout. I truly hope the research in this thesis will influence and inspire future work in the wider MR community.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available