Use this URL to cite or link to this record in EThOS:
Title: Intelligent imaging of perfusion using arterial spin labelling
Author: Owen, David
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Arterial spin labelling (ASL) is a powerful magnetic resonance imaging technique, which can be used to noninvasively measure perfusion in the brain and other organs of the body. Promising research results show how ASL might be used in stroke, tumours, dementia and paediatric medicine, in addition to many other areas. However, significant obstacles remain to prevent widespread use: ASL images have an inherently low signal to noise ratio, and are susceptible to corrupting artifacts from motion and other sources. The objective of the work in this thesis is to move towards an "intelligent imaging" paradigm: one in which the image acquisition, reconstruction and processing are mutually coupled, and tailored to the individual patient. This thesis explores how ASL images may be improved at several stages of the imaging pipeline. We review the relevant ASL literature, exploring details of ASL acquisitions, parameter inference and artifact post-processing. We subsequently present original work: we use the framework of Bayesian experimental design to generate optimised ASL acquisitions, we present original methods to improve parameter inference through anatomically-driven modelling of spatial correlation, and we describe a novel deep learning approach for simultaneous denoising and artifact filtering. Using a mixture of theoretical derivation, simulation results and imaging experiments, the work in this thesis presents several new approaches for ASL, and hopefully will shape future research and future ASL usage.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available