Use this URL to cite or link to this record in EThOS:
Title: Quantification of knee extensor muscle forces : a multimodality approach
Author: Ahmadzadeh, Seyed Mohammad Hassan
ISNI:       0000 0004 9350 491X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Given the growing interest of using musculoskeletal (MSK) models in a large number of clinical applications for quantifying the internal loading of the human MSK system, verification and validation of the model’s predictions, especially at the knee joint, have remained as one of the biggest challenges in the use of the models as clinical tools. This thesis proposes a methodology for more accurate quantification of knee extensor forces by exploring different experimental and modelling techniques that can be used to enhance the process of verification and validation of the knee joint model within the MSK models for transforming the models to a viable clinical tool. In this methodology, an experimental protocol was developed for simultaneous measurement of the knee joint motion, torques, external forces and muscular activation during an isolated knee extension exercise. This experimental protocol was tested on a cohort of 11 male subjects and the measurements were used to quantify knee extensor forces using two different MSK models representing a simplified model of the knee extensor mechanism and a previously-developed three-dimensional MSK model of the lower limb. The quantified knee extensor forces from the MSK models were then compared to evaluate the performance of the models for quantifying knee extensor forces. The MSK models were also used to investigate the sensitivity of the calculated knee extensor forces to key modelling parameters of the knee including the method of quantifying the knee centre of rotation and the effect of joint translation during motion. In addition, the feasibility of an emerging ultrasound-based imaging technique (shear wave elastography) for direct quantification of the physiologically-relevant musculotendon forces was investigated. The results in this thesis showed that a simplified model of the knee can be reliably used during a controlled planar activity as a computationally-fast and effective tool for hierarchical verification of the knee joint model in optimisation-based large-scale MSK models to provide more confidence in the outputs of the models. Furthermore, the calculation of knee extensor muscle forces has been found to be sensitive to knee joint translation (moving centre of rotation of the knee), highlighting the importance of this modelling parameter for quantifying physiologically-realistic knee muscle forces in the MSK models. It was also demonstrated how the movement of the knee axis of rotation during motion can be used as an intuitive tool for understanding the functional anatomy of the knee joint. Moreover, the findings in this thesis indicated that the shear wave elastography technique can be potentially used as a novel method for direct quantification of the physiologically-relevant musculotendon forces for independent validation of the predictions of musculotendon forces from the MSK models.
Supervisor: Bull, Anthony M. J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral