Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.805846
Title: Application of radial distribution functions to diffraction and imaging data : interfacial structures, amorphous, disordered materials
Author: Mukaddem, Karim Tanju
ISNI:       0000 0004 9347 9734
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The central theme of this thesis is the application of radial and pair distribution function analysis to materials characterisation problems for nanotechnology. These concepts are introduced in Chapter 1, and the associated methods are described in Chapter 2. Chapter 3 details the first of the results which discusses the design and development of a software tool called ImageDataExtractor. This auto-extracts microscopy images and then analyses them to afford quantitative information regarding particles in a sample, such as shape, size and distribution. It realises an opportunity for data-mining the ubiquity of readily available images in the literature. Chapter 4 presents results of the development and execution of a novel experimental technique, called glancing-angle pair distribution function (gaPDF) analysis, applied to the structure of the working electrode in dye-sensitised solar cells (DSSCs). This structure was successfully observed, validating this novel method. The investigation also suggested preferred binding modes of the carboxylic acid anchoring groups present in this interfacial structure. Chapters 5 and 6 demonstrate the application of PDF analysis to synchrotron-based powder diffraction data of two material case studies: the rare earth phosphate glass (REPG) (Gd2O3)0.230(P2O5)0.770, and four Ru based photo-isomers. The closest R...R rare earth separation, which governs optical properties of REPGs, was determined to be 4.2(1) Å, aided by various statistical techniques. Analysis on four Ru-based photo-isomers confirmed: the existence of local structure in such compounds, their ability to be photo-isomerised in powder form, the theoretical models constructed using computational techniques, and the lack of heterogeneity in photo-isomerisation throughout a given light-induced sample. Chapter 7 concludes the work and offers a future outlook.
Supervisor: Cole, Jacqueline Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.805846  DOI:
Keywords: radial distribution function ; materials ; imaging ; pair distribution function ; synchrotron ; diffraction
Share: