Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.801147
Title: Topological models of swarming
Author: Lewis, Jason Moghal
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
We study the collective behaviour of animal aggregations, swarming, using theoretical models of collective motion. Focusing on bird flocking, we aim to reproduce two main aspects of real world aggregations: cohesion and coalignment. Following the observation that interactions between birds in the flock does not have a characteristic length-scale, we concentrate on topological, metric-free models of collective motion. We propose and analyse three novel models of swarming: two based on topological interactions between particles, which define interacting neighbours based on Voronoi tessellation of the group of particles, and one which uses the visual field of the agent. We explore the problem of cohesion, bounding of topological flocks in free space, by introducing the mechanism of neighbour anticipation. This relies on going towards the inferred future position of an individuals neighbours and results in providing the bounding forces for the group. We also address the issue of unrealistic density distributions in existing metric-free models by introducing a homogeneous, tunable motional bias throughout the swarm. The proposed model produces swarms with density distributions corresponding to empirical data from flocks of Starlings. Furthermore, we show that for a group with a visual information input and individuals moving so as to seek marginal opacity that alignment and group cohesion can be induced without the need for explicit aligning interaction rules between group members. For each of the proposed models a comprehensive analysis of characteristics and behaviour under different parameter sets is performed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.801147  DOI: Not available
Keywords: QC Physics ; QL Zoology
Share: