Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.800455
Title: Ontology-based context-aware model for event processing in an IoT environment
Author: Al-Lahham, Amer
ISNI:       0000 0004 8508 8995
Awarding Body: University of Salford
Current Institution: University of Salford
Date of Award: 2020
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The Internet of Things (IoT) is more and more becoming one of the fundamental sources of data. The observations produced by these sources are made accessible with heterogeneous vocabularies, models and data formats. The heterogeneity factor in such an enormous environment complicates the task of sharing and reusing this data in a more intelligent way (other than the purposes it was initially set up for). In this research, we investigate these challenges, considering how we can transform raw sensor data into a more meaningful information. This raw data will be modelled using ontology-based information that is accessible through continuous queries for sensor streaming data. Interoperability among heterogeneous entities is an important issue in an IoT environment. Semantic modelling is a key element to support interoperability. Most of the current ontologies for IoT mainly focus on resources and services information. This research builds upon the current state-of-the-art ontologies to provide contextual information and facilitate sensor data querying. In this research, we present an Ontology to represent an IoT environment, with emphasis on temporal and geospatial context enrichment. Furthermore, the Ontology is used alongside a proposed syntax based on Description Logic to build an Event Processing Model. The aim of this model is to interconnect ontology-based reasoning with event processing. This model enables to perform event processing over high-level ontological concepts. The Ontology was developed using the NeOn methodology, which emphasises on the reuse and modularisation. The Competency Questions techniques was used to develop the requirements of this Ontology. This was later evaluated by domain experts in software engineering and cloud computing. The ontology was evaluated based on its completeness, conciseness, consistency and expandability, over 70% of the domain experts agreed on the core modules, concepts and relationships within the ontology. The resulted Ontology provides a core IoT ontology that could be used for further development within a specific IoT domain. II The proposed Ontology-Based Context-Aware model for Event-Processing in an IoT environment “OCEM-IoT”, implements all the time operators used in complex event processing engines. Throughput and latency were used as performance comparison metrics for the syntax evaluation; the results obtained show an improved performance over existing event processing languages.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.800455  DOI: Not available
Share: