Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.798446
Title: Tensor network descriptions of quantum entanglement in path integrals, thermalisation and machine learning
Author: Hallam, Andrew
ISNI:       0000 0004 8507 5000
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
One of the major ways in which quantum mechanics differs from classical mechanics is the existence of special quantum correlations - entanglement. Typical quantum states are highly entangled, making them complex and inefficient to represent. Physically interesting states are unusual, they are only weakly entangled. By restricting ourselves to weak entanglement, efficient representations of quantum states can be found. A tensor network is constructed by taking objects called tensors that encode spatially local information and gluing them together to create a large network that describes a complex quantum state. The manner in which the tensors are connected defines the entanglement structure of the quantum state. Tensors networks are therefore a natural framework for describing physical behaviour of complex quantum systems. In this thesis we utilize tensor networks to solve a number of interesting problems. Firstly, we study a Feynman path integral written over tensor network states. As a sum over classical trajectories, a Feynman path integral can struggle to capture entanglement. Combining the path integral with tensor networks overcomes this. We consider the effect of quadratic fluctuations on the tensor network path integral and calculate corrections to observables numerically and analytically. We also study the time evolution of complex quantum systems. By projecting quantum dynamics onto a classical phase space defined using tensor networks, we relate thermal behaviour of quantum systems to classical chaos. In doing so we demonstrate a relationship between entanglement growth and chaos. By studying the dynamics of coupled quantum chains we also gain insight into how quantum correlations spread over time. As noted, tensor networks are remarkably efficient. In the final section of this thesis we use tensor networks to create compressed machine learning algorithms. Their efficiency means that tensor networks can use $50$ times fewer parameters with no significant decrease in performance.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.798446  DOI: Not available
Share: