Use this URL to cite or link to this record in EThOS:
Title: Modelling discrepancy in Bayesian calibration of reservoir models
Author: Nobakht, Behzad Nezhad Karim
ISNI:       0000 0004 8503 6618
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Simulation models of physical systems such as oil field reservoirs are subject to numerous uncertainties such as observation errors and inaccurate initial and boundary conditions. However, after accounting for these uncertainties, it is usually observed that the mismatch between the simulator output and the observations remains and the model is still inadequate. This incapability of computer models to reproduce the real-life processes is referred to as model inadequacy. This thesis presents a comprehensive framework for modelling discrepancy in the Bayesian calibration and probabilistic forecasting of reservoir models. The framework efficiently implements data-driven approaches to handle uncertainty caused by ignoring the modelling discrepancy in reservoir predictions using two major hierarchical strategies, parametric and non-parametric hierarchical models. The central focus of this thesis is on an appropriate way of modelling discrepancy and the importance of the model selection in controlling overfitting rather than different solutions to different noise models. The thesis employs a model selection code to obtain the best candidate solutions to the form of non-parametric error models. This enables us to, first, interpolate the error in history period and, second, propagate it towards unseen data (i.e. error generalisation). The error models constructed by inferring parameters of selected models can predict the response variable (e.g. oil rate) at any point in input space (e.g. time) with corresponding generalisation uncertainty. In the real field applications, the error models reliably track down the uncertainty regardless of the type of the sampling method and achieve a better model prediction score compared to the models that ignore discrepancy. All the case studies confirm the enhancement of field variables prediction when the discrepancy is modelled. As for the model parameters, hierarchical error models render less global bias concerning the reference case. However, in the considered case studies, the evidence for better prediction of each of the model parameters by error modelling is inconclusive.
Supervisor: Christie, Mike ; Demyanov, Vasily Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available