Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.797379
Title: Mathematical modelling of oxygen supply and cellular behaviour in tissue engineering scaffolds
Author: Yntema, Frank Jan
ISNI:       0000 0004 8503 6538
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Scaffold tissue engineering has proven promising for regenerative medicine that could potentially improve the lives of many. To accelerate its clinical translation, a better understanding of complex behaviours of the in-vivo environment in human tissue and, more importantly, how it influences the design of the porous scaffold, is needed. The use of computational modelling has made it possible by providing quantitative insights into many biological and physical processes in tissue scaffolds under various tissue environments. This has led to a new line of research for creating methods in which new designs of implant and tissue graft designs can be assessed and optimised. The aim of this thesis is to devise a computational framework that has the flexibility and simplicity necessary to adapt to different applications of tissue scaffolds and allow for further adaptation for more specialised investigations, while simultaneously having sufficient complexity to assess the effects of changes in the scaffold's microstructures for the qualitative analysis of its potential for promoting tissue ingrowth. It is hoped that the future developments of this thesis research work could be used to create a means of comparing scaffold performance when subjected to different environments. This will make it possible to assess a scaffold design's potential during the early stages of development for a variety of applications and conditions.
Supervisor: Chen, Yuhang ; Ritchie, James Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.797379  DOI: Not available
Share: