Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.794210
Title: Simultaneous wireless information and power transfer based on generalized triangular decomposition
Author: Al-Baidhani, Ahmed
ISNI:       0000 0004 8498 9919
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The rapidly growing number of wireless devices has raised the need for designing self-sustained wireless systems. Simultaneous wireless information and power transfer (SWIPT) has been advocated as a promising solution. Various approaches have emerged to design wireless systems that enable SWIPT. In this thesis, we propose a novel approach for spatial switching (SS) based SWIPT using the generalized triangular decomposition (GTD) for point-to-point multiple-input-multiple-output (MIMO) systems. The GTD structure allows the transmitter to use the highest gain subchannels jointly for energy and information transmissions and these joint transmissions can be separated at the receiver. We first derive the optimal GTD structure to attain optimal performance in SS based SWIPT systems. This structure is then extended to design three novel transceivers where each transceiver achieves a certain objective and meets specific constraints. The first transceiver focuses on minimizing the total transmitted power while satisfying the energy harvesting and data rate constraints at the receiver. The second transceiver targets the data rate maximization while meeting a certain amount of energy at the receiver. The third transceiver considers the energy harvesting maximization and guarantees to satisfy the required data rate constraint. The proposed transceivers are designed assuming two transmitted power constraints at the transmitter; the instantaneous total transmit power and the limited transmit power per subchannel. For each designed transceiver, optimal and/or suboptimal solutions are developed to obtain joint power allocation and subchannel assignment under a linear energy harvesting model. Additionally, a novel extension to the SS based SWIPT system is proposed considering a non-linear energy harvesting model. Thereafter, the case of maximizing the energy harvesting for a given data rate and instantaneous total transmitted power constraints is studied. A solution is developed that obtains jointly the optimal power allocation and the subchannel assignment alongside the optimal and/or suboptimal split ratios at the energy harvesters. The theoretical and simulation results show that our novel proposed GTD designs for both linear and non-linear energy harvesting models outperform the state-of-the-art singular value decomposition (SVD) based SWIPT designs.
Supervisor: Benaissa, Mohammed Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.794210  DOI: Not available
Share: