Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.792032
Title: Metal-based composite microcapsule shells : development of new synthesis methods and characterisation of transport properties
Author: Fiaz, Assim
ISNI:       0000 0004 8504 7237
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Dec 2022
Access from Institution:
Abstract:
In this study platinum nanoparticles (Pt-NPs) and silica/platinum composite (Si/Pt) stabilised oil-in-water emulsions (low molecular weight oil core) have been investigated for the reduction, catalytic activity and deposition of a secondary metal film via electroless plating, resulting in gold coated emulsion droplets. Colloidal silica stabilised emulsion droplets have been coated in poly(dopamine) (PDA) resulting in core-shell microcapsules where the shell is a binary mixture of polymer and particles. Subsequently the PDA microcapsule surface has been used for the deposition of a silver shell on the surface via electroless plating of silver ions initially adsorbed to the PDA microcapsule shells. The microcapsules have been tested for active core retention and shell permeability, by introducing the microcapsules to a continuous phase of ethanol/water (volume ratio 4:1) in which the active core is completely soluble and measuring the core release by utilising gas chromatography. The gold coated emulsion droplets (Pt-NPs and Si/Pt) completely retained the active core for over 30 days at 40oC, demonstrating the retention of the core and permeability of the gold shell. The silver coated PDA microcapsules released most of the core after 1 hour due to the in-sufficient coverage of the PDA surface with silver. The microcapsules were also tested for encapsulating phase change materials (PCM) resulting in MicroEncapsulated PCM (MEPCMs). The MEPCMs were tested for thermal energy storage and release for home comfort. Analysis on the MEPCMs properties such as supercooling, encapsulation efficiency and thermal conductivity was also carried out. Gold coated emulsion droplet (Pt-NPs and Si/Pt), demonstrated good encapsulation efficiencies and ratios, which demonstrated the good ability of the iv MEPCMs to store and release thermal heat. The gold coated emulsion droplets also demonstrated reduced supercooling and enhanced thermal conductivity.
Supervisor: Cayre, Oliver ; York, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.792032  DOI: Not available
Share: