Use this URL to cite or link to this record in EThOS:
Title: Fusion of LIDAR with stereo camera data : an assessment
Author: Veitch-Michaelis, J. L.
ISNI:       0000 0004 8498 718X
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis explores data fusion of LIDAR (laser range-finding) with stereo matching, with a particular emphasis on close-range industrial 3D imaging. Recently there has been interest in improving the robustness of stereo matching using data fusion with active range data. These range data have typically been acquired using time of flight cameras (ToFCs), however ToFCs offer poor spatial resolution and are noisy. Comparatively little work has been performed using LIDAR. It is argued that stereo and LIDAR are complementary and there are numerous advantages to integrating LIDAR into stereo systems. For instance, camera calibration is a necessary prerequisite for stereo 3D reconstruction, but the process is often tedious and requires precise calibration targets. It is shown that a visible-beam LIDAR enables automatic, accurate (sub-pixel) extrinsic and intrinsic camera calibration without any explicit targets. Two methods for using LIDAR to assist dense disparity maps from featureless scenes were investigated. The first involved using a LIDAR to provide high-confidence seed points for a region growing stereo matching algorithm. It is shown that these seed points allow dense matching in scenes which fail to match using stereo alone. Secondly, LIDAR was used to provide artificial texture in featureless image regions. Texture was generated by combining real or simulated images of every point the laser hits to form a pseudo-random pattern. Machine learning was used to determine the image regions that are most likely to be stereo- matched, reducing the number of LIDAR points required. Results are compared to competing techniques such as laser speckle, data projection and diffractive optical elements.
Supervisor: Muller, J-P. ; Storey, J. ; Walton, D. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available