Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.790606
Title: Enzyme-driven chemotactic synthetic vesicles
Author: Contini, C.
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Directional locomotion or taxis is possibly one of the most important evolutionary milestones, since it has allowed many living organisms to outperform their non-motile competitors. In particular, chemotaxis is one of the most elaborated targeting processes present in Nature. By sensing a chemical gradient, uni or multicellular organisms are able to move toward or away from favourable/unfavourable stimuli, adapting to changes in environmental conditions. This phenomenon normally involves the presence of a specific chemical gradient of signaling molecules that guides cells in their orientation and movement. Chemotaxis is therefore a potent long-range directional process, extending over length scales that are several orders of magnitude larger than the motilesystem itself. Creating an artificial self-propelled object, similar to many biological micro and nano-motors present in Nature, is one of the main challenges in nanotechnology. The chemotaxis applied to an artificial nanovector could be used for a wide range of applications, including drug delivery systems and nanoreactors. Combining natural enzymes with synthetic vesicles, we propose an efficient chemotactic nano-system driven by enzymatic conversion of small water-soluble molecules. We achieve this by encapsulating enzymes into nanoscopic polymer vesicles (known as polymersomes) whose membranes are designed to contain permeable domains within an impermeable matrix. The asymmetric distribution of the permeable domains enables the localised expulsion of the entrapped enzyme reaction products. This, in turn, allows propulsion in a specific direction that is controlled by the signaling molecule concentration. We demonstrate this concept, using physiologically relevant hydrogen peroxide and glucose coupled with catalase, glucose peroxidase and their combination loaded within asymmetric polymersomes. We show that the combination of membrane topology and enzyme encapsulation produces propulsion and chemotaxis without requiring chemical modification. Finally, we propose a new diffusion mechanism whereby selective permeability across nanoscopic membrane compartments is exploited to generate locomotion.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.790606  DOI: Not available
Share: