Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.789828
Title: Understanding the structure of materials at the intersection of rationalisation, prediction and Big Data
Author: Uhrin, M.
ISNI:       0000 0004 8502 1774
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Theoretical materials science has a large and growing role to play in modern society thanks to its ability to deliver materials with new and interesting properties. The properties of any material are, on some level, a function of its internal structure. In this work we combine three important tools spanning the last 100 years of materials research, rationalisation, prediction and big data in an attempt to understand the factors that underpin the stability of ordered structures and to build an understanding of structure that is agnostic of a particular element or building block. We apply rationalisation to data mining of the Inorganic Crystal Structure Database, using various proposed structure descriptors to probe the factors affecting structure stability. Extensive prediction is performed on the Fe-Ni-Si system at inner earth core pressures to determine the phases most likely to be present, yielding a new, stable, Ni-Si structure. A new prediction technique for 2D grain boundaries is presented that doubles the size of system that can reasonably be studied at the ab initio level of theory. The structurally rich phosphorus and arsenic systems are investigated using structure prediction, producing new metastable structures. Finally, we use a simple model for particles that attract at long range and repel at short to probe all the possible binary structures over a wide range of stoichiometries. By carrying out prediction over a wide range of potential parameters we build a database of almost 20M entries. Contained within are a number of unreported structures including many in parts of parameter space that go beyond the periodic table in terms of size and bond energy ratios. Our work provides hints that these hypothetical structures could be realised in self assembling systems made up from constituents with tunable interactions opening the door to the possibility of new properties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.789828  DOI: Not available
Share: