Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.789732
Title: The problem of granularity for scientific explanation
Author: Kinney, David
ISNI:       0000 0004 8501 8647
Awarding Body: London School of Economics and Political Science (LSE)
Current Institution: London School of Economics and Political Science (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This dissertation aims to determine the optimal level of granularity for the variables used in probabilistic causal models. These causal models are useful for generating explanations in a number of scientific contexts. In Chapter 1, I argue that there is rarely a unique level of granularity at which a given phenomenon can be causally explained, thereby rejecting various causal exclusion arguments. In Chapter 2, I consider several recent proposals for measuring the explanatory power of causal explanations, and show that these measures fail to track the comparative depth of explanations given at different levels of granularity. In Chapter 3, I offer a pragmatic account of how to partition the measure space of a causal variable so as to optimally explain its effect. My account uses the decision-theoretic notion of value of information, and indexes the relative depth of an explanation to a particular agent faced with a particular decision problem. Chapter 4 applies this same decisiontheoretic framework to answer the epistemic question of how to discover constitutive relationships in nature. In Chapter 5, I describe the formal details of the relationship between random variables that are meant to be coarse-grained and fine-grained representations of the same type of phenomenon. I use this formal framework to rebut a popular argument for the view that special science probabilities can be objective chances. Chapter 6 discusses challenges related to the causal interpretation of Bayes nets that use imprecise rather than precise probabilities.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.789732  DOI: Not available
Keywords: B Philosophy (General) ; Q Science (General)
Share: