Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787568
Title: Multi-species evolutionary algorithms for complex optimisation problems
Author: Lu, Xiaofen
ISNI:       0000 0004 7972 6794
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Evolutionary algorithms (EAs) face challenges when meeting optimisation problems that are large-scale, multi-disciplinary, or dynamic, etc. To address the challenges, this thesis focuses on developing specific and efficient multi-species EAs to deal with concurrent engineering (CE) problems and dynamic constrained optimisation problems (DCOPs). The main contributions of this thesis are: First, to achieve a better collaboration among different sub-problem optimisation, it proposes two novel collaboration strategies when using cooperative co-evolution to solve two typical kinds of CE problems. Both help to obtain designs of higher quality. An effective method is also given to adjust the communication frequency among different sub-problem optimisation. Second, it develops a novel dynamic handling strategy for DCOPs, which applies speciation methods to maintain individuals in different feasible regions. Experimental studies show that it generally reacts faster than the state-of-the-art algorithms on a test set of DCOPs. Third, it proposes another novel dynamic handling strategy based on competitive co-evolution (ComC) to address fast-changing DCOPs. It employs ComC to find a promising solution set beforehand and uses it for initialisation when detecting a change. It is shown by experiments that this strategy can help adapt to environmental changes well especially for DCOPs with very fast changes.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.787568  DOI: Not available
Keywords: QA75 Electronic computers. Computer science ; T Technology (General)
Share: