Use this URL to cite or link to this record in EThOS:
Title: Volumetric MRI reconstruction from 2D slices in the presence of motion
Author: Ebner, Michael
ISNI:       0000 0004 7970 6988
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice.
Supervisor: Ourselin, S. ; Vercauteren, T. ; Atkinson, D. ; David, A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available