Use this URL to cite or link to this record in EThOS:
Title: Understanding conditional modes of action in chemical-induced toxicity using rule models
Author: Mahmoud, Samar
ISNI:       0000 0004 7968 5785
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
It is estimated that 115 million animals are used in experimental testing each year. Hence, shifting efforts toward alternative methods for toxicity assessment is essential. However, slow regulatory acceptance of new approaches is governed by knowledge gaps in toxicity modes of action. In this thesis, I describe these challenges and the use of in vitro screening as an alternative of animal testing. I also discuss common data-based methods to derive hypotheses about toxicity modes of actions, and the associated limitations in capturing multiple biological perturbations. I applied novel data-based workflows, using rule models, to prioritize in vitro assays predictive of toxicity as well as to detect significant polypharmacology profiles. I explain how constraints were applied to rule-based models to inform meaningful mechanistic interpretation for two toxicity endpoints: rat hepatotoxicity and acute toxicity. I compared assays selected, by rules, for predicting hepatotoxicity with endpoints used in in vitro models from commercial sources. An overlap was observed including cytochrome activity, mitochondrial toxicity and immunological responses. However, nuclear receptor activity, identified in rules, is not currently covered in commercial setups. I also demonstrate that endocrine disruption endpoints extrapolate better into in vivo toxicity when a set of specific conditions are met, such as physicochemical properties associated with good bioavailability. Next, I examined synergistic interactions between conditions in rules describing acute toxicity. I gained novel insights into how specific stressors potentiate the perturbation by known key events, such as acetylcholinesterase inhibition and neuro-signalling disruption. I show that examining polypharmacology profiles is particularly important at low bioactive potencies. Further, the overall predictive performance of rules describing acute toxicity was tested against a benchmark Random Forest model in a conformal prediction framework. Irrespective to the data type used in the training, the models were prone to bias over compounds promiscuity, by which high promiscuous compounds were more likely to be predicted as toxic. Overall, the studies conducted in this thesis provide novel insights into molecular mechanisms of toxicity, namely hepatotoxicity and acute toxicity, and with regards to chemical properties and polypharmacology. This knowledge can be used to improve the utility and design of alternative methods for toxicity, and hence, accelerate the regulatory acceptance.
Supervisor: Bender, Andreas Sponsor: Islamic Development Bank ; Cambridge Trust Fund
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: In vitro toxicology ; Rule models ; Toxicity modes of action ; Polyphamrmacology ; Conformal prediction ; Toxicity assessment ; ToxCast