Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.782343
Title: Enhancement of bees algorithm for global optimisation
Author: Bahari, Muhammad Syahril
ISNI:       0000 0004 7967 9481
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This research focuses on the improvement of the Bees Algorithm, a swarm-based nature-inspired optimisation algorithm that mimics the foraging behaviour of honeybees. The algorithm consists of exploitation and exploration, the two key elements of optimisation techniques that help to find the global optimum in optimisation problems. This thesis presents three new approaches to the Bees Algorithm in a pursuit to improve its convergence speed and accuracy. The first proposed algorithm focuses on intensifying the local search area by incorporating Hooke and Jeeves' method in its exploitation mechanism. This direct search method contains a pattern move that works well in the new variant named "Bees Algorithm with Hooke and Jeeves" (BA-HJ). The second proposed algorithm replaces the randomly generated recruited bees deployment method with chaotic sequences using a well-known logistic map. This new variant called "Bees Algorithm with Chaos" (ChaosBA) was intended to use the characteristic of chaotic sequences to escape from local optima and at the same time maintain the diversity of the population. The third improvement uses the information of the current best solutions to create new candidate solutions probabilistically using the Estimation Distribution Algorithm (EDA) approach. This new version is called Bees Algorithm with Estimation Distribution (BAED). Simulation results show that these proposed algorithms perform better than the standard BA, SPSO2011 and qABC in terms of convergence for the majority of the tested benchmark functions. The BA-HJ outperformed the standard BA in thirteen out of fifteen benchmark functions and is more effective in eleven out of fifteen benchmark functions when compared to SPSO2011 and qABC. In the case of the ChaosBA, the algorithm outperformed the standard BA in twelve out of fifteen benchmark functions and significantly better in eleven out of fifteen test functions compared to qABC and SPSO2011. BAED discovered the optimal solution with the least number of evaluations in fourteen out of fifteen cases compared to the standard BA, and eleven out of fifteen functions compared to SPSO2011 and qABC. Furthermore, the results on a set of constrained mechanical design problems also show that the performance of the proposed algorithms is comparable to those of the standard BA and other swarm-based algorithms from the literature.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.782343  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General) ; TJ Mechanical engineering and machinery
Share: