Use this URL to cite or link to this record in EThOS:
Title: Combined measures of oxygenation, haemodynamics and metabolism to understand neural responses in infants
Author: Siddiqui, Maheen Faisal
ISNI:       0000 0004 7967 8921
Awarding Body: Birkbeck, University of London
Current Institution: Birkbeck (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
fNIRS is an established research tool used to investigate typical and atypical brain development. Primarily, it provides measures of haemodynamic changes that are used to indirectly infer neural activity. Broadband NIRS provides a more direct marker of neuronal activation through measurement of changes in cytochrome-c-oxidase (CCO). As a cellular measure, CCO can be used as a bridge to improve our understanding of the link between neural and haemodynamic activity or "neurovascular coupling". Study 1 demonstrated that changes in mitochondrial activity could be measured alongside haemodynamics during functional activation, over the temporal cortex, using a miniature system in four-to-six-month-old infants. In order to investigate the spatial specificity of CCO, its relation to haemodynamics and to build upon our understanding of neurovascular coupling mechanisms, multi-channel broadband NIRS was used alongside EEG in Study 2 where responses were measured over the visual cortex. Study 2 was performed in adults as the development of a concurrent NIRS and EEG protocol was methodologically challenging. Following this, Study 3 extended on experimental paradigms from Studies 1 and 2 to measure changes in metabolic activity and haemodynamics over the temporal and visual cortices, in four-to-seven-month-old infants. This study demonstrated simultaneous broadband NIRS and EEG use in infants for the first time. The results provided evidence of underdeveloped coupling of cerebral blood flow changes and mitochondrial activity in early infancy. Finally, Study 4 extended the protocol to investigate underlying biological mechanisms that may be altered in neurovascular coupling in autism, by studying infants at high familial risk for the disorder. The findings demonstrated that the combined protocol was not only feasible for use to study atypical brain development but also provided preliminary evidence of altered coupling between cerebral energy metabolism and haemodynamics. Taken together, this work illuminates hitherto undocumented evidence of neurovascular coupling during brain development and highlights the potential of using broadband NIRS with EEG for future neurodevelopmental research in typical and atypical populations.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available