Use this URL to cite or link to this record in EThOS:
Title: Collective behaviour : from cells to humans
Author: Duteil, Mathieu
ISNI:       0000 0004 7967 4429
Awarding Body: Swansea University
Current Institution: Swansea University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Living in organised groups is a strategy that can be observed in a multitude of diverse species. Among such species, the behaviour of an individual on their own is not the same as within a group: the environment is modified by the presence of more subjects, individuals interact with each other, and from those interactions complex patterns of behaviour can emerge. Some species of animals almost exclusively exist as groups, and as a consequence, studying them in a social context is the only way to understand their behaviour in nature. This is the idea that drives all the research presented in this thesis: the particular behaviour exhibited by the group is so robust that it will emerge even in a very simplified environment. By observing the individual and the group in those simplified experimental conditions, it is possible to deduce rules that might govern the interaction. The importance of interactions in the group's behaviour can then be demonstrated by implementing a computer model of agents following those rules and comparing it with natural and experimental behaviour. This thesis presents different examples of such analyses, and gives illustrations of the range of questions that can be answered through this method. Groups of stem cells, juvenile sea bass and human beings were successively observed and tracked in suitable environments, with or without perturbation. The data extracted from those experiments were then processed so as to correct recording errors, and individual and collective behaviours were derived from those data, returning new insights on the nature of the interaction at the individual level, their consequences at the global level, as well as the effects of the interaction on both. Finally, I present the computer models derived from those analyses. Many systems in nature share this property of global behaviours emerging from deterministic local interaction, and as a consequence studies of this kind could shed light on important questions, of which cancer treatment, ocean acidification and human organisations are but a few examples.
Supervisor: King, Andrew J. ; Brown, Rowan M. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral