Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.780994
Title: Buffer de-bloating in wireless access networks
Author: Dai, Yuhang
ISNI:       0000 0004 7966 6306
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Excessive buffering brings a new challenge into the networks which is known as Bufferbloat, which is harmful to delay sensitive applications. Wireless access networks consist of Wi-Fi and cellular networks. In the thesis, the performance of CoDel and RED are investigated in Wi-Fi networks with different types of traffic. Results show that CoDel and RED work well in Wi-Fi networks, due to the similarity of protocol structures of Wi-Fi and wired networks. It is difficult for RED to tune parameters in cellular networks because of the time-varying channel. CoDel needs modifications as it drops the first packet of queue and the head packet in cellular networks will be segmented. The major contribution of this thesis is that three new AQM algorithms tailored to cellular networks are proposed to alleviate large queuing delays. A channel quality aware AQM is proposed using the CQI. The proposed algorithm is tested with a single cell topology and simulation results show that the proposed algorithm reduces the average queuing delay for each user by 40% on average with TCP traffic compared to CoDel. A QoE aware AQM is proposed for VoIP traffic. Drops and delay are monitored and turned into QoE by mathematical models. The proposed algorithm is tested in NS3 and compared with CoDel, and it enhances the QoE of VoIP traffic and the average endto- end delay is reduced by more than 200 ms when multiple users with different CQI compete for the wireless channel. A random back-off AQM is proposed to alleviate the queuing delay created by video in cellular networks. The proposed algorithm monitors the play-out buffer and postpones the request of the next packet. The proposed algorithm is tested in various scenarios and it outperforms CoDel by 18% in controlling the average end-to-end delay when users have different channel conditions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.780994  DOI: Not available
Keywords: Wireless Access Networks ; Excessive buffering ; active queue management
Share: