Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779858
Title: Study of all-optical FSO relay based systems under the influence of the atmospheric turbulence channel
Author: Nor, Norhanis Aida Mohd
ISNI:       0000 0004 7965 5527
Awarding Body: Northumbria University
Current Institution: Northumbria University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Free space optical (FSO) communications is an emerging high-speed data rate, high-bandwidth, and license-free access solution for a number of applications including the "last mile" access networks. However, the reliability and availability of FSO systems are affected by a number of atmospheric phenomena such as fog, rain, haze, smoke, and turbulence. Interestingly, the severity of such random degradations is highly related to the transmission distance, thus resulting in link deterioration and ultimately complete link failure. In this thesis, an all-optical FSO relay-assisted system technique is adopted to mitigate the destructive effects due to distance dependent atmospheric turbulence-induced fading. In this scheme, relays are incorporated to the direct link between the transmitter and the receiver nodes in order to reduce the turbulence induced path loss per link, thus extending the link span and ensuring higher link availability (i.e., 99.999%) as well as improving the overall system performance. Two all-optical relaying schemes are proposed and investigated, namely all-optical amplify-and-forward (AOAF) FSO relay and all-optical regenerate-and-forward (AORF) FSO relay assisted systems. In the AOAF FSO system, the performance analysis of triple-hop AOAF FSO communications system is investigated under the impact of non-homogeneous atmospheric turbulence condition. We present novel experimental results for the single, dual, and triple-hop AOAF FSO systems under several turbulence configurations and regimes. We also provide a mathematical framework for the end-to-end signal-to-noise ratio (SNR) and the bit error rate (BER) performance and confirm that the derived analytical results reasonably match with the experimental results especially at relatively high SNR. The evaluated BER performances under different turbulence regimes, modelled by the Gamma-Gamma distribution model show that the considered relay-assisted FSO system offers a significant performance improvement for weak to strong turbulence regimes, even without the knowledge of the channel state information. For instance, at a target BER of 10^-5 the proposed triple-hop FSO scheme offers ~5 dB and ~4 dB of SNR gains compared to direct transmission for turbulence strengths.
Supervisor: Ghassemlooy, Zabih ; Zvanovec, Stanislav Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.779858  DOI: Not available
Keywords: G400 Computer Science ; H600 Electronic and Electrical Engineering
Share: