Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779492
Title: Combined effects of ageing and body composition on skeletal muscle structure and function in untrained individuals
Author: Tomlinson, David Jonathan
ISNI:       0000 0004 7965 1884
Awarding Body: Manchester Metropolitan University
Current Institution: Manchester Metropolitan University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis investigated whether body composition modulates neural, morphologic and/or functional characteristics of skeletal muscle in young (Y: 18-49 years) and old (O: 50-80 years), adult male (n=34) and female (n=102) populations. Classification by BMI revealed no significant differences in agonist muscle activation and antagonist co-contraction in Y and O individuals. However, high adiposity in Y (but not O) females led to lower muscle activation (94 vs. 88 %). Plantar flexion (PF) maximum voluntary contraction torque corrected for antagonist co-contraction and muscle activation (nMVC), gastrocnemius medialis (GM) muscle volume (MV) and physiological cross sectional area were significantly higher in the Y obese compared with that of underweight (+27%, +77% & +77%) and normal weight (+23%, +73% & +70%) females. No group differences were reported in the O female cohort. Fascicle pennation angle in Y and O females incremented with increasing BMI. PF nMVC normalised to GM MV (nMVC/GM MV) was lower in the Y obese females whether classified by BMI (-26%) or adiposity (-11%) in comparison to their normal weight counterparts. At the fascicular level, no impact of BMI or adiposity was evident in either Y or O female populations. There was an ageing-associated accelerated loss of muscle content in the obese (-2.1cm3/year) and high adipose (-2.1cm3/year) females. The continuum of both adiposity and BMI revealed similar impact on nMVC, GM MV and nMVC/GM MV, in both Y and O males. Interestingly, the slopes of the regressions implied the Y males to increase GM specific force (SF) with either increasing BMI or adiposity. Differential gender effects were observed at the fascicular level with the slope of GM SF being steeper in the obese males compared with the obese females (-0.373 N/cm2/year vs. 0.056 N/cm2/year; Student's t-statistic -4.56, p < 0.05). In conclusion increased adiposity (as evident in obesity) variably overloads the skeletal musculature in the Y compared to the O untrained adult population. However, obesity accelerates the magnitude of ageing-related sarcopenia and asthenia. The wider implication of this thesis relates to the need for the individualisation of strategies to modulate the functional and mobility limitations seen in older age.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.779492  DOI: Not available
Share: