Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.779256
Title: The predictive power of social media within cryptocurrency markets
Author: Phillips, Ross Christopher
ISNI:       0000 0004 7964 9522
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Blockchain technology has generated a great deal of interest in recent years, as has the associated area of cryptocurrency trading, not only on the part of individuals but also from traditional financial institutions and hedge funds. However, there is currently limited knowledge as to how to predict future cryptocurrency price movements. This thesis investigates whether online indicators, especially from social media, can be harnessed to predict cryptocurrency price movements - to achieve this, three experiments are conducted. The first experiment analyses time-evolving relationships between chosen online indicators and associated cryptocurrency prices; relationships are considered over short, medium and long-term durations. The work introduces and evaluates several influential factors from the social media platform Reddit, a platform previously unexplored within cryptocurrency prediction literature. It is found that medium and longer-term relationships strengthen in bubble market regimes (compared to non-bubble regimes). The second experiment utilises these promising new factors as inputs to a predictive model. The model used was originally designed to detect influenza epidemic outbreaks, and is repurposed here to model epidemic-like cryptocurrency price bubbles, demonstrating how social media can be used to track the epidemic spread of an investment idea. The predictive power of the model is validated through the generation of a profitable trading strategy. Having considered quantitative count-based metrics in the previous chapters (e.g. posts per day, submissions per day, new authors per day etc.), the next experiment considers the content of social media submissions. More specifically, the third experiment analyses social media submission content to investigate whether certain topics of discussion precede upcoming shorter term (positive or negative) price movements. Information evidencing time-varying interest in various topics is retrieved from social media submissions, upon which hidden interactions with the associated cryptocurrency price are deciphered. It is found that certain topics precede major positive or negative price movements, and also additional analysis shows that certain discussion topics exhibit longer-term relationships with cryptocurrency market prices.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.779256  DOI: Not available
Share: