Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.778043
Title: Static analysis for facilitating secure and reliable software
Author: Siavvas, Miltiadis
ISNI:       0000 0004 7963 8073
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Software security and reliability are aspects of major concern for software development enterprises that wish to deliver dependable software to their customers. Several static analysis-based approaches for facilitating the development of secure and reliable software have been proposed over the years. The purpose of the present thesis is to investigate these approaches and to extend their state of the art by addressing existing open issues that have not been sufficiently addressed yet. To this end, an empirical study was initially conducted with the purpose to investigate the ability of software metrics (e.g., complexity metrics) to discriminate between different types of vulnerabilities, and to examine whether potential interdependencies exist between different vulnerability types. The results of the analysis revealed that software metrics can be used only as weak indicators of specific security issues, while important interdependencies may exist between different types of vulnerabilities. The study also verified the capacity of software metrics (including previously uninvestigated metrics) to indicate the existence of vulnerabilities in general. Subsequently, a hierarchical security assessment model able to quantify the internal security level of software products, based on static analysis alerts and software metrics is proposed. The model is practical, since it is fully-automated and operationalized in the form of individual tools, while it is also sufficiently reliable since it was built based on data and well-accepted sources of information. An extensive evaluation of the model on a large volume of empirical data revealed that it is able to reliably assess software security both at product- and at class-level of granularity, with sufficient discretion power, while it may be also used for vulnerability prediction. The experimental results also provide further support regarding the ability of static analysis alerts and software metrics to indicate the existence of software vulnerabilities. Finally, a mathematical model for calculating the optimum checkpoint interval, i.e., the checkpoint interval that minimizes the execution time of software programs that adopt the application-level checkpoint and restart (ALCR) mechanism was proposed. The optimum checkpoint interval was found to depend on the failure rate of the application, the execution cost for establishing a checkpoint, and the execution cost for restarting a program after failure. Emphasis was given on programs with loops, while the results were illustrated through several numerical examples.
Supervisor: Gelenbe, Erol Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.778043  DOI:
Share: