Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.778023
Title: Development of new intelligent autonomous robotic assistant for hospitals
Author: Vicente, Alexandre
ISNI:       0000 0004 7963 7871
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.
Supervisor: Yang, Guang-Zhong Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.778023  DOI:
Share: