Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.777297
Title: Verified programming with explicit coercions
Author: Schwaab, Christopher
ISNI:       0000 0004 7963 2018
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Type systems have proved to be a powerful means of specifying and proving important program invariants. In dependently typed programming languages types can depend on values and hence express arbitrarily complicated propositions and their machine checkable proofs. The type-based approach to program specification allows for the programmer to not only transcribe their intentions, but arranges for their direct involvement in the proving process, thus aiding the machine in its attempt to satisfy difficult obligations. In this thesis we develop a series of patterns for programming in a correct-by-construction style making use of constraints and coercions to prove properties within a dependently typed host. This allows for the development of a verified, kernel which can be built upon using the host system features. In particular this should allow for the development of "tactics" or semiautomated solvers invoked when coercing types all within a single language. The efficacy of this approach is given by the development of a system of expressions indexed by their, exposing a case analysis feature serving to generate value constraints. These constraints are directly reflected into the host allowing for their involvement in the type-checking process. A motivating use case of this design shows how a term's semantic index information admits an exact, formalized cost analysis amenable to reasoning within the host. Finally we show how such a system is used to identify unreachable dead-code, trivially admitting the design and verification of an SSA style compiler with this optimization. We think such a design of explicitly proving the local correctness of type-transformations in the presence of accumulated constraints can form the basis of a flexible language in concert with a variety of trusted solver.
Supervisor: Brady, Edwin ; Hammond, Kevin Sponsor: University of St Andrews
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.777297  DOI:
Share: