Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.776372
Title: Creep failure of aluminium alloys at high temperatures
Author: McLure, Alexander
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 1972
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The majority of polycrystalline metals and alloys, when subjected to certain conditions of stress at temperatures > 0.5 Tm (Tm - melting temperature), display an intercrystalline mode of failure. In general, this type of fracture occurs under creep conditions when the applied stress system produces low strain rates and long rupture lives. Low ductility, as measured by elongation and reduction of area at fracture, characterises the failure. Research has established that the failure is initiated by the nucleation and subsequent growth of sub-microscopic fissures in the grain boundaries. Although it is to be expected that the development of discontinuities in the grain boundaries should adversely affect the creep properties of a metal or alloy, it is not clear how the effect might vary with temperature and/or stress system. The existence of discontinuities in a stressed material produces local stress concentrations around those discontinuities. However, since ease of plastic flow varies with both temperature and stress system, the effect of the discontinuities on creep properties can also be expected to vary with temperature and stress system. In addition, the question arises as to whether the appearance of discontinuities in the grain boundaries necessarily constitutes failure. The main objective of this research was, therefore, to determine the effects that intergranular discontinuities have on the creep Properties of a metal or alloy under different conditions of stress and temperature and under different stress systems.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.776372  DOI: Not available
Share: