Title:
|
Face alignment in the wild
|
Face alignment on a face image is a crucial step in many computer vision applications such as face recognition, verification and facial expression recognition. In this thesis we present a collection of methods for face alignment in real-world scenarios where the acquisition of the face images cannot be controlled. We first investigate local based random regression forest methods that work in a voting fashion. We focus on building better quality random trees, first, by using privileged information and second, in contrast to using explicit shape models, by incorporating spatial shape constraints within the forests. We also propose a fine-tuning scheme that sieves and/or aggregates regression forest votes before accumulating them into the Hough space. We then investigate holistic methods and propose two schemes, namely the cascaded regression forests and the random subspace supervised descent method (RSSDM). The former uses a regression forest as the primitive regressor instead of random ferns and an intelligent initialization scheme. The RSSDM improves the accuracy and generalization capacity of the popular SDM by using several linear regressions in random subspaces. We also propose a Cascaded Pose Regression framework for face alignment in different modalities, that is RGB and sketch images, based on a sketch synthesis scheme. Finally, we introduce the concept of mirrorability which describes how an object alignment method behaves on mirror images in comparison to how it behaves on the original ones. We define a measure called mirror error to quantitatively analyse the mirrorability and show two applications, namely difficult samples selection and cascaded face alignment feedback that aids a re-initialisation scheme. The methods proposed in this thesis perform better or comparable to state of the art methods. We also demonstrate the generality by applying them on similar problems such as car alignment.
|