Use this URL to cite or link to this record in EThOS:
Title: Face alignment in the wild
Author: Yang, Heng
ISNI:       0000 0004 7962 371X
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Face alignment on a face image is a crucial step in many computer vision applications such as face recognition, verification and facial expression recognition. In this thesis we present a collection of methods for face alignment in real-world scenarios where the acquisition of the face images cannot be controlled. We first investigate local based random regression forest methods that work in a voting fashion. We focus on building better quality random trees, first, by using privileged information and second, in contrast to using explicit shape models, by incorporating spatial shape constraints within the forests. We also propose a fine-tuning scheme that sieves and/or aggregates regression forest votes before accumulating them into the Hough space. We then investigate holistic methods and propose two schemes, namely the cascaded regression forests and the random subspace supervised descent method (RSSDM). The former uses a regression forest as the primitive regressor instead of random ferns and an intelligent initialization scheme. The RSSDM improves the accuracy and generalization capacity of the popular SDM by using several linear regressions in random subspaces. We also propose a Cascaded Pose Regression framework for face alignment in different modalities, that is RGB and sketch images, based on a sketch synthesis scheme. Finally, we introduce the concept of mirrorability which describes how an object alignment method behaves on mirror images in comparison to how it behaves on the original ones. We define a measure called mirror error to quantitatively analyse the mirrorability and show two applications, namely difficult samples selection and cascaded face alignment feedback that aids a re-initialisation scheme. The methods proposed in this thesis perform better or comparable to state of the art methods. We also demonstrate the generality by applying them on similar problems such as car alignment.
Supervisor: Not available Sponsor: China Scholarship Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering and Computer Science