Use this URL to cite or link to this record in EThOS:
Title: The semantics of multicopy atomic ARMv8 and RISC-V
Author: Pulte, Christopher
ISNI:       0000 0004 7961 9702
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Previous work has established precise operational concurrency models for Power and ARMv8, in an abstract micro-architectural style based on detailed discussion with IBM and ARM staff and extensive hardware testing. To account for the precise architectural behaviour these models are complex. This thesis aims to provide a better understanding for the relaxed memory concurrency models of the architectures ARMv8, RISC-V, and (to a lesser degree) Power. Power and early versions of ARMv8 have non-multicopy-atomic (non-MCA) concurrency models. This thesis provides abstraction results for these, including a more abstract non-MCA ARMv8 storage subsystem model, and characterisations of the behaviour of mixed-size Power and non-MCA ARMv8 programs when using barriers or release/acquire instructions for all memory accesses, with respect to notions of Sequential Consistency for mixed-size programs. During the course of this PhD project, and partly due to our extended collaboration with ARM, ARM have shifted to a much simplified multicopy-atomic concurrency architecture that also includes a formal axiomatic concurrency model. We develop a correspondingly simplified operational model based on the previous non-MCA models, and, as the main result of this thesis, prove equivalence between the simplified operational and the reference axiomatic model. We have also been actively involved in the RISC-V Memory Model Task Group. RISC-V has adopted a multicopy atomic model closely following that of ARMv8, but which incorporates some changes motivated by issues raised in our operational modelling of ARMv8. We develop an adapted RISC-V operational concurrency model that is now part of the official architecture documentation. Finally, in order to give a simpler explanation of the MCA ARMv8 and RISC-V concurrency models for programmers, we develop an equivalent operational concurrency model in a different style. The \promisingarmriscv model, based on the C11 Promising model, gives up the micro-architectural intuition the other operational models offer in favour of providing a more abstract model. We prove it equivalent to the MCA ARMv8 and RISC-V axiomatic models in Coq.
Supervisor: Sewell, Peter Michael Sponsor: Computer Laboratory and Qualcomm Premium Studentship ; EPSRC ; Arm Ltd
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Programming language semantics ; relaxed memory concurrency ; processor architectures