Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774612
Title: The development of computational tools for theoretical predictions in particle physics at the Large Hadron Collider
Author: Cridge, Thomas Henri
ISNI:       0000 0004 7961 8152
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The Large Hadron Collider (LHC) experiments are an excellent tool for the improvement of our knowledge of the Standard Model and the examination of Beyond Standard Model theories. Nonetheless, to maximise the learning-potential of the LHC, clear and precise theoretical predictions are needed, for both the Standard Model and its extensions, to allow critical comparison of these models with data. In particular, given the complexity of the collision environment at the LHC, and the expansive nature of many parameter spaces of Beyond Standard Model theories, computational programs to perform theoretical calculations are increasingly required. The work presented in this thesis fits this role, it is focused on two computational programs developed with the aim of producing such theoretical predictions for LHC phenomenology in two key areas. These are the precision Standard Model predictions of transverse momentum spectra for a wide class of processes at the LHC, and Beyond Standard Model predictions for the decay widths of as-yet undiscovered particles in the context of supersymmetry. Chapter 1 presents a brief chronology and review of the Standard Model. Fol- lowing this, the work reported in this thesis is split into two parts, focused on the two main projects undertaken. Chapters 2, 3 and 4 describe the development of the SoftSusy decay calculator program to determine the partial widths and branching ratios of supersymmetric and Higgs particles in the Minimal Supersymmetric Standard Model and the Next-to-Minimal Supersymmetric Standard Model. The theoretical and phenomenological background, methodology, assumptions, and the vast array of decay modes calculated by the program are described. This is followed by details of the extensive validation of the decay calculator program and a selection of results. Chapter 5 begins the second part of the thesis, providing theoretical background for Chapters 6 and 7, which discuss the newly-developed reSolve program, designed to undertake the theoretically-demanding calculations associated with transverse momentum resummation for a wide range of LHC processes. Details of the methods, assumptions, validation and results for channels so far included are all provided, these show excellent agreement with previous theoretical results and experimental data. Both projects are then summarised in Chapter 8. Further information is provided in the appendices; Appendix A presents explicitly all formulae incorporated into the SoftSusy decay calculator pro- gram; whilst Appendix B provides further details on the theoretical underpinning of the transverse momentum resummation calculations performed by the reSolve program.
Supervisor: Allanach, Benjamin Christopher Sponsor: STFC ; Cambridge Philosophical Society ; National Science Foundation ; Gordon and Betty Moore Foundation
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.774612  DOI:
Keywords: MSSM ; NMSSM ; branching ratio ; lifetime ; Resummation ; transverse momentum ; precision ; differential distributions ; diphoton ; Drell-Yan ; HEP ; Particle Physics ; LHC ; collider phenomenology ; Supersymemtry ; Standard Model ; Beyond Standard Model ; QCD
Share: