Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.772040
Title: Evaluating privacy-friendly mobility analytics on aggregate location data
Author: Pyrgelis, Apostolos
ISNI:       0000 0004 7660 8995
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Information about people's movements and the locations they visit enables a wide number of mobility analytics applications, e.g., real-time traffic maps or urban planning, aiming to improve quality of life in modern smart-cities. Alas, the availability of users' fine-grained location data reveals sensitive information about them such as home and work places, lifestyles, political or religious inclinations. In an attempt to mitigate this, aggregation is often employed as a strategy that allows analytics and machine learning tasks while protecting the privacy of individual users' location traces. In this thesis, we perform an end-to-end evaluation of crowdsourced privacy-friendly location aggregation aiming to understand its usefulness for analytics as well as its privacy implications towards users who contribute their data. First, we present a time-series methodology which, along with privacy-friendly crowdsourcing of aggregate locations, supports mobility analytics such as traffic forecasting and mobility anomaly detection. Next, we design quantification frameworks and methodologies that let us reason about the privacy loss stemming from the collection or release of aggregate location information against knowledgeable adversaries that aim to infer users' profiles, locations, or membership. We then utilize these frameworks to evaluate defenses ranging from generalization and hiding, to differential privacy, which can be employed to prevent inferences on aggregate location statistics, in terms of privacy protection as well as utility loss towards analytics tasks. Our results highlight that, while location aggregation is useful for mobility analytics, it is a weak privacy protection mechanism in this setting and that additional defenses can only protect privacy if some statistical utility is sacrificed. Overall, the tools presented in this thesis can be used by providers who desire to assess the quality of privacy protection before data release and its results have several implications about current location data practices and applications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.772040  DOI: Not available
Share: