Use this URL to cite or link to this record in EThOS:
Title: Optical fibre communication systems in the nonlinear regime
Author: Saavedra Mondaca, Gabriel
ISNI:       0000 0004 7660 3406
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis studies solutions to increase the capacity of optical communication systems in the presence of nonlinear effects. Extending the optical bandwidth and mitigating nonlinear distortions were identified as promising ways to increase the throughput in transmission system. Raman amplification was investigated as a potential replacement of the conventional erbium-doped fibre amplifier (EDFA). In this context, the performance of discrete and distributed Raman amplifiers was studied in the linear and nonlinear regimes. Despite the bandwidth benefits, discrete Raman amplifiers were shown to exhibit an increased noise figure and nonlinear distortions, compared to EDFA. Additionally, for the first time, a thorough study of digital back-propagation for distributed Raman amplified links was performed, allowing for higher transmission rates at the expense of an increase of 25% in the algorithm complexity. A major focus of this work was to investigate the growth of nonlinear distortions in optical communication systems as the bandwidth is expanded. This work was the first to experimentally validate the Gaussian noise model (and variations accounting for inter-channel Raman scattering) in a wideband transmission regime up to 9~THz. Using these models, the merit of increasing the optical bandwidth was addressed, showing a beneficial sublinear increase in throughput despite the growth of nonlinear effects. An alternative nonlinear compensation method is optical phase conjugation (OPC). The performance of OPC was experimentally evaluated over an installed fibre link, showing limited improvements when OPC is used with practical transmission constraints. To overcome this limitation, a new method combining OPC and Volterra equalisation was developed. This method was shown to enhance the performance of two limited nonlinear compensation techniques, offering an attractive trade-off between performance and complexity. The results obtained in this research allow for higher information throughput to be transmitted, and can be used to plan and design future communication system and networks around the world.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available