Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.771878
Title: Maximising achievable rates of experimental nonlinear optical fibre transmission systems
Author: Elson, Daniel John Trevor
ISNI:       0000 0004 7660 2171
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
It is generally expected that the demand for digital data services will continue to grow, placing ever greater requirements on optical fibre networks which carry the bulk of digital data. Research to maximise achievable information rates (AIR) over fibre has led to increasing spectral efficiency, symbol rate and bandwidth use. All of these contribute to transmission impairments due to the nonlinear nature of the optical fibre. This thesis describes research performed to investigate the effects of nonlinear impair- ments on the AIRs of experimental optical fibre transmission. To maximise throughput, the entire available optical bandwidth should be filled with transmission channels. An investigation into large bandwidth transmission through the use of spectrally shaped amplified spontaneous emission noise (SS-ASE) was con- ducted. The enhanced Gaussian noise model is used to analytically describe this tech- nique, and SS-ASE was experimentally shown to provide a lower bound on the AIR. Nonlinear interference (NLI) was modelled from an inter-symbol interference (ISI) model to characterise the noise and was experimentally verified. This new understand- ing helps quantify potential gain available from nonlinearity mitigation. Multicore fibres offer an alternative route to improve AIR, and are susceptible to another noise source known as crosstalk. This inter-core crosstalk can be controlled by suitable design of the fibre, hence in the limiting case, NLI rather than crosstalk will limit AIR. Nonlinearity compensation was, for the first time, experimentally demon- strated in the presence of crosstalk in a homogeneous 7-core fibre and shown to provide an increase in AIR. The results of this thesis can be used to evaluate future transmission systems for maximising information rates. It was shown that experimentally, SS-ASE is a viable transmission tool to evaluate system performance, NLI can be characterised using an ISI model and nonlinearity mitigation is possible in MCF systems limited by crosstalk.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.771878  DOI: Not available
Share: