Use this URL to cite or link to this record in EThOS:
Title: Decisional tools for enabling successful manufacture and commercialisation of cell therapy products
Author: Pereira Chilima, Tania D.
ISNI:       0000 0004 7660 2104
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Cell therapy products offer the potential for treatment and possibly cure of a number of indications, such as cancer, diabetes and heart disease. However, a number of economic, regulatory, logistical and technical challenges need to be addressed so as to achieve successful commercialisation of cell therapy products. With more cell therapy products reaching commercial stage, there is an increased interest in developing and evaluating novel manufacturing strategies to enhance cost-effectiveness while accommodating the unique features of cell therapy products. This thesis aims to develop and apply advanced decisional tools so as to provide an integrated approach that offers valuable insights to some of the dominant challenges faced by cell therapy developers. The decisional tools developed in this thesis comprise the following models tailored to cell therapy products: a technology-specific detailed factorial method for fixed capital investment (FCI) estimation, a process economics model for computing cost of goods (COG), brute force optimization, a multi-attribute decision making model, a robustness analysis model and a risk-adjusted net present value model. A key novel contribution is the detailed factorial methodology for estimating FCI and footprint for bespoke cell therapy facilities that accounts for technology-specific factors for key manufacturing platforms as well as the implications of single-use technologies and open versus closed operations. This is used to derive benchmark values for short-cut Lang factors for typical cell therapy facilities according to the technologies and commercialisation scenario selected. A set of industrially-relevant case studies is presented for topical cell therapies, namely mesenchymal stem cell (MSC) therapies and chimeric antigen receptor (CAR) T-cell therapies. The case studies explored different aspects of the manufacturing strategy of 5 cell therapy products such as optimal technology selection, process robustness, performance targets for successful commercialisation, fixed capital investment requirement, the cost benefits of allogeneic cell therapy products with respect to autologous cell therapy products and the effect of decentralised multi-site manufacture of autologous products. In particular, the MSC case study provides a more holistic approach to evaluating different technologies that considers both financial and operational features. The CAR T-cell case study provides the first in-depth economic analysis and set of insights at both the technology level and an enterprise's facility configuration level. The work in the thesis illustrates how the decisional tools developed can facilitate the design of cost-effective manufacturing strategies for cell therapy products.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available