Use this URL to cite or link to this record in EThOS:
Title: Design for support in the initial design of naval combatants
Author: Esbati, Syavash
ISNI:       0000 0004 7659 8547
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The decline of defence budgets coupled with the escalation of warship procurement costs have significantly contributed to fleet downsizing in most major western navies despite little reduction in overall commitments, resulting in extra capability and reliability required per ship. Moreover, the tendency of governments to focus on short-term strategies and expenditure has meant that those aspects of naval ship design that may be difficult to quantify, such as supportability, are often treated as secondary issues and allocated insufficient attention in Early Stage Design. To tackle this, innovation in both the design process and the development of individual ship designs is necessary, especially at the crucial early design stages. Novelty can be achieved thanks to major developments in computer technology and in adopting an architecturally-orientated approach to early stage ship design. The existing technical solutions aimed at addressing supportability largely depend on highly detailed ship design information, thus fail to enable rational supportability assessments in the Concept Phase. This research therefore aimed at addressing the lack of a quantitative supportability evaluation approach applicable to early stage naval ship design. Utilising Decision Analysis, Effectiveness Analysis, and Analytic Hierarchy Process, the proposed approach tackled the difficulty of quantifying certain aspects of supportability in initial ship design and provided a framework to address the issue of inconsistent and often conflicting preferences of decision makers. Since the ship's supportability is considered to be significantly affected by its configuration, the proposed approach utilised the advantages of an architecturally-orientated early stage ship design approach and a new concept design tool developed at University College London. The new tool was used to develop concept level designs of a frigate-sized combatant and a number of variations of it, namely configurational rearrangement with enhancement of certain supportably features, and an alternative ship design style. The design cases were then used to demonstrate the proposed evaluation approach. The overall aim of proposing a quantitative supportability evaluation approach applicable to concept naval ship design was achieved, although several issues and limitations emerged during both the development as well as the implementation of the approach. Through identification of the research limitations, areas for future work aimed at improving the proposal have been proposed.
Supervisor: Andrews, D. ; Pawling, R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available