Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.769743
Title: High-resolution fluorescence endomicroscopy for rapid evaluation of breast cancer margins
Author: Vyas, Khushi
ISNI:       0000 0004 7659 145X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Breast cancer is a major public health problem world-wide and the second leading cause of cancer-related female deaths. Breast conserving surgery (BCS), in the form of wide local excision (WLE), allows complete tumour resection while maintaining acceptable cosmesis. It is the recommended treatment for a large number of patients with early stage disease or, in more advanced cases, following neoadjuvant chemotherapy. About 30% of patients undergoing BCS require one or more re-operative interventions, mainly due to the presence of positive margins. The standard of care for surgical margin assessment is post-operative examination of histopathological tissue sections. However, this process is invasive, introduces sampling errors and does not provide real-time assessment of the tumour status of radial margins. The objective of this thesis is to improve intra-operative assessment of margin status by performing optical biopsy in breast tissue. This thesis presents several technical and clinical developments related to confocal fluorescence endomicroscopy systems for real-time characterisation of different breast morphologies. The imaging systems discussed employ flexible fibre-bundle based imaging probes coupled to high-speed line-scan confocal microscope set-up. A preliminary study on 43 unfixed breast specimens describes the development and testing of line-scan confocal laser endomicroscope (LS-CLE) to image and classify different breast pathologies. LS-CLE is also demonstrated to assess the intra-operative tumour status of whole WLE specimens and surgical excisions with high diagnostic accuracy. A third study demonstrates the development and testing of a bespoke LS-CLE system with methylene blue (MB), an US Food and Drug Administration (FDA) approved fluorescent agent, and integration with robotic scanner to enable large-area in vivo imaging of breast cancer. The work also addresses three technical issues which limit existing fibre-bundle based fluorescence endomicroscopy systems: i) Restriction to use single fluorescence agent due to low-speed, single excitation and single fluorescence spectral band imaging systems; ii) Limited Field of view (FOV) of fibre-bundle endomicroscopes due to small size of the fibre tip and iii) Limited spatial resolution of fibre-bundle endomicroscopes due to the spacing between the individual fibres leading to fibre-pixelation effects. Details of design and development of a high-speed dual-wavelength LS-CLE system suitable for high-resolution multiplexed imaging are presented. Dual-wavelength imaging is achieved by sequentially switching between 488 nm and 660 nm laser sources for alternate frames, avoiding spectral bleed-through, and providing an effective frame rate of 60 Hz. A combination of hand-held or robotic scanning with real-time video mosaicking, is demonstrated to enable large-area imaging while still maintaining microscopic resolution. Finally, a miniaturised piezoelectric transducer-based fibre-shifting endomicroscope is developed to enhance the resolution over conventional fibre-bundle based imaging systems. The fibre-shifting endomicroscope provides a two-fold improvement in resolution and coupled to a high-speed LS-CLE scanning system, provides real-time imaging of biological samples at 30 fps. These investigations furthered the utility and applications of the fibre-bundle based fluorescence systems for rapid imaging and diagnosis of cancer margins.
Supervisor: Yang, Guang-Zhong ; Leff, Daniel ; Hughes, Michael Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.769743  DOI:
Share: