Use this URL to cite or link to this record in EThOS:
Title: Perspective taking in robots : a framework and computational model
Author: Fischer, Tobias
ISNI:       0000 0004 7658 898X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Humans are inherently social beings that benefit from their perceptional capability to embody another point of view. This thesis examines this capability, termed perspective taking, using a mixed forward/reverse engineering approach. While previous approaches were limited to known, artificial environments, the proposed approach results in a perceptional framework that can be used in unconstrained environments while at the same time detailing the mechanisms that humans use to infer the world's characteristics from another viewpoint. First, the thesis explores a forward engineering approach by outlining the required perceptional components and implementing these components on a humanoid iCub robot. Prior to and during the perspective taking, the iCub learns the environment and recognizes its constituent objects before approximating the gaze of surrounding humans based on their head poses. Inspired by psychological studies, two separate mechanisms for the two types of perspective taking are employed, one based on line-of-sight tracing and another based on the mental rotation of the environment. Acknowledging that human head pose is only a rough indication of a human's viewpoint, the thesis introduces a novel, automated approach for ground truth eye gaze annotation. This approach is used to collect a new dataset, which covers a wide range of camera-subject distances, head poses, and gazes. A novel gaze estimation method trained on this dataset outperforms previous methods in close distance scenarios, while going beyond previous methods and also allowing eye gaze estimation in large camera-subject distances that are commonly encountered in human-robot interactions. Finally, the thesis proposes a computational model as an instantiation of a reverse engineering approach, with the aim of understanding the underlying mechanisms of perspective taking in humans. The model contains a set of forward models as building blocks, and an attentional component to reduce the model's response times. The model is crucial in explaining human data in congruency matching experiments and suggests that humans implement a similar attentional mechanism. Several testable predictions are put forward, including the prediction that forced early responses lead to an egocentric bias. Experimental results on the computational formalization of perspective taking also open up future possibilities of exploring links to other perceptional and cognitive mechanisms, such as active vision and autobiographical memories.
Supervisor: Demiris, Yiannis Sponsor: European Commission ; Samsung Advanced Institute of Technology
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral