Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.769081
Title: Towards modern, accessible and dynamic HPC using container-based virtual clusters
Author: Higgins, Joshua
ISNI:       0000 0004 7656 6297
Awarding Body: University of Huddersfield
Current Institution: University of Huddersfield
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In this thesis, a novel Virtual Container Cluster (VCC) framework is presented. Despite the growing popularity of container virtualisation in order to increase the flexi-bility of the software stack, run time environment virtualisation still poses significant portability challenges; by depending on the underlying cluster execution paradigm,a niche class of HPC only containers has emerged. This trend is detrimental to reusability, reproducibility, and encouraging new communities to HPC. Traditional virtualisation techniques have a rich history within HPC, and have been demonstrated to offer much more than software flexibility. A Virtual Machine by nature requires an OS and full stack environment akin to a physical machine, and this allows it to be instantiated regardless of the underlying machine and what services it provides. This capability is essential in order to implement job forwarding and spanning - where the burden of an entire job can be transferred or shared between hetero-geneous cluster systems - with a high level of confidence that the environments will be compatible. In turn, this brings improvements to global resource performance, reducing the job turnaround time and increasing cluster utilization. The VCC is an innovative solution that combines the full stack and container virtualisation approaches. Therefore, it offers both the flexibility of containers with the improved portability, performance and scalability of the full stack approach. In order to maintain the same accessibility and lower barrier of entry as the run time environment approach, the design incorporates an autonomous configuration and contextualisation mechanism, along with a Software Defined Networking technology, to ensure the full stack container does not place an additional burden on the user. The usefulness and performance is validated through benchmarking and two case studies: virtual clusters in the classroom and inter-institutional spanning.
Supervisor: Holmes, Violeta Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.769081  DOI: Not available
Keywords: T Technology (General)
Share: