Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.768691
Title: Stretchable interconnects for smart integration of sensors in wearable and robotic applications
Author: Dang, Wenting
ISNI:       0000 0004 7654 993X
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Stretchable electronic systems are needed in realising a wide range of applications, such as wearable healthcare monitoring where stretching movements are present. Current electronics and sensors are rigid and non-stretchable. However, after integrating with stretchable interconnects, the overall system is able to withstand a certain degree of bending, stretching and twisting. The presence of stretchable interconnects bridges rigid sensors to stretchable sensing networks. In this thesis, stretchable interconnects focusing on the conductive polymer Poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS) , the composite and the metallic-polyimide (PI) are presented. Three type of stretchable interconnects were developed including gold (Au) -PEDOT:PSS hybrid film interconnects, Graphite-PEDOT:PSS composite interconnects and Au-PI dual-layered interconnects. The Au-PEDOT:PSS hybrid interconnects' stretchability can reach 72%. The composite exhibits a stretchability of 80% but with an extremely high variation in resistance (100000%). The Au-PI interconnects that have a serpentine shape with the arc degree of 260° reveal the highest stretchability, up to 101%, and its resistance variation remains within 0.2%. Further, the encapsulation effect, cyclic stretching, and contact pad's influence, are also investigated. To demonstrate the application of developed stretchable interconnects, this thesis also presents the optimised interconnects integrated with the electrochemical pH sensor and CNT-based strain sensor. The integrated stretchable system with electrochemical pH sensor is able to wirelessly monitor the sweat pH. The whole system can withstand up to 53% strain and more than 500 cycles at 30% strain. For the CNT-based strain sensor, the sensor is integrated on the pneumatically actuated soft robotic finger to monitor the bending radius (23 mm) of the finger. In this way, the movement of the soft robotic finger can be controlled. These two examples of sensor's integration with stretchable interconnects successfully demonstrate the concept of stretchable sensing network. Further work will focus on realising a higher density sensing and higher multifunctional sensing stretchable system seamlessly integrated with cloth fibres.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.768691  DOI: Not available
Keywords: Q Science (General) ; T Technology (General)
Share: