Use this URL to cite or link to this record in EThOS:
Title: Electro-mechanical interactions in aerospace gas turbines
Author: Moore, Gareth Edward
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
The provision of electrical power on modern aircraft is a necessary and growing aspect of a gas turbine's function. The replacement of traditional pneumatic, hydraulic and mechanical systems with electrical equivalents means that electricity is now the dominant means of power distribution on aircraft. However, the electrical loads seen on aircraft present challenges, as they are time varying and are often non-linear. This is particularly true for loads such as radar. The aviation industry has adopted the term More Electric Aircraft (MEA) to describe the latest generation of aircraft with a high reliance on electrical power. There is potential for significant interaction between the transient variation of electrical loading and the gas turbine (both drive-train and engine core). Engine testing and initial simulation work support this view. Understanding of this phenomenon must now be furthered through modelling and testing. This thesis presents simulation models of a transmission system and generator interface, which provides a useful kernel for a modelled system to assess electro-mechanical interaction. This is extended to multi-domain simulation work through the successful interlinking of transmission, generator and an electrical load model. These models have been validated, at a domain level, against analytical expressions, and also as a complete electro-mechanical system against test data. To allow more control over test conditions, an electro-mechanical test rig is designed and constructed. The data from the test rig is analysed and compared to modelled results. This thesis also presents potential mitigation actions for avoiding unwanted electro-mechanical interactions during electrical load transients. A method of extracting transient mechanical torque information from a gas turbine's electrical generator's terminal quantities is included. At a system level, the simulation work in this thesis potentially enables the development of future designs with improved power systems integration throughout the entire airframe. High level control could allow optimisation of the power conversion process between gas turbine spool and electrical systems, with increased intelligence in the movement of power between components.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available